Mark Scheme 4730 June 2007

Mark Scheme

June 2007

1	(i) $[\omega = 2\pi/6.1 = 1.03]$	M1		For using T = $2\pi/\omega$
		M1		For using $v_{max} = a \omega$
	Speed is 3.09ms ⁻¹	A1	3	
	(ii)	M1		For using $v^2 = \omega^2 (A^2 - x^2)$
				or for using $v = A \omega \cos \omega t$ and x
				$= A \sin \omega t$
	$2.5^2 = 1.03^2(3^2 - x^2)$	A1ft		ft incorrect ω
	or $x = 3\sin(1.03x0.60996)$	A 1	2	
	Distance is 1.76m	A1	3	
2	[Magnitudes 0.6, 0.057 x 7, 0.057 x 10]	M1		For triangle with magnitudes
	[shown
	For magnitudes of 2 sides correctly marked	A1		
	For magnitudes of all 3 sides correctly marked	A1		
		M1		For attempting to find angle (α)
				opposite to the side of magnitude
				0.057 x 7
		M1		For correct use of the cosine rule
	$0.399^2 = 0.57^2 + 0.6^2 - 2 \ge 0.57 \ge 0.6\cos \alpha$	A 1 C		or equivalent
		Alft	7	$(190 20.9)^{0}$
	Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$
2	ALTERNATIVE METHOD			
-		M1		For using I= Δ my parallel to the
				initial direction of motion
				or parallel to the impulse
	$-0.6\cos\alpha = 0.057 \text{ x } 7\cos\beta - 0.057 \text{ x } 10$	A1		• •
	or $0.6 = 0.057 \times 10 \cos \alpha + 0.057 \times 7 \cos \gamma$			
	,	M1		For using I= Δ mv perpendicular
				to the initial direction of motion
				or perpendicular to the impulse
	$0.6\sin \alpha = 0.057 \text{ x } 7\sin \beta$	A1		
	or $0.057 \times 10 \sin \alpha = 0.057 \times 7 \sin \gamma$			
		M1		For eliminating β *or γ
	$0.399^2 = (0.57 - 0.6\cos\alpha)^2 + (0.6\sin\alpha)^2$	Alft		For emiliating p or γ
	$0.399^{\circ} = (0.57 - 0.0\cos \alpha)^{\circ} + (0.0\sin \alpha)^{\circ}$ or $0.399^{\circ} = (0.6 - 0.57\cos \alpha)^{\circ} + (0.057\sin \alpha)^{\circ}$	AIIt		
	Angle is 140° Angle is 140°	A1	7	$(180 - 39.8)^{\circ}$
L	111610 10 170	111	/	(100 - 57.0)

4730

3	(i) $[0.2v dv/dx = -0.4v^2]$	M1		For using Newton's second law
	(1/v) dv/dx = -2	A1	2	with $a = v dv/dx$ AG
		M1		For separating variables and
	(ii) $\left[\int (1/v)dv = \int -2dx\right]$	1011		attempting to integrate
	$\ln v = -2x (+C)$	A1		1. 8 8
	$[\ln v = -2x + \ln u]$	M1		For using $v(0) = u$
	$v = ue^{-2x}$	A1	4	AG
	(iii) $\left[\int e^{2x} dx = \int u dt\right]$	M1		For using $v = dx/dt$ and separating variables
	$e^{2x}/2 = ut$ (+C)	A1		separating variables
	$[e^{2x}/2 = ut + \frac{1}{2}]$	M1		For using $x(0) = 0$
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
	ALTERNATIVE METHOD FOR PART (iii)	M1		Formaine a devide comparation
	$\int \frac{1}{v^2} dv = -2 \int dt \rightarrow -1/v = -2t + A$, and	M1		For using $a = dv/dt$, separating variables, attempting to integrate
	A = -1/u]			and using $v(0) = u$
	$\mathbf{x} = \mathbf{x}$	M1		For substituting $v = ue^{-2x}$
	$-e^{2x}/u = -2t - 1/u$	A1		i of successfulling i us
	u = 6.70	A1	4	Accept $(e^4 - 1)/8$
4	$y=15\sin\alpha$ (=12)	B1		
	$[4(15\cos\alpha) - 3 \ge 12 = 4a + 3b]$	M1		For using principle of conservation of momentum in the direction of l.o.c.
	Equation complete with not more than one error	A1		
	4a + 3b = 0	A1		
		AI		
1		M1		For using NEL in the direction of
		M1		For using NEL in the direction of l.o.c.
	$0.5(15\cos \alpha + 12) = b - a$	M1 A1		l.o.c.
	[a = -4.5, b = 6]	M1 A1 M1		l.o.c. For solving for a and b
	[a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$,	M1 A1		l.o.c.
	[a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)]	M1 A1 M1 M1		l.o.c. For solving for a and b For correct method for speed or direction of A
	[a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111°	M1 A1 M1		l.o.c.For solving for a and bFor correct method for speed or direction of ADirection may be stated in any
	[a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)]	M1 A1 M1 M1		l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form, including $\theta = 69^{\circ}$ with θ clearly and appropriately
	[a = -4.5, b = 6] [Speed = $\sqrt{(-4.5)^2 + 12^2}$, Direction tan ⁻¹ (12/(-4.50)] Speed of A is 12.8ms ⁻¹ and direction is 111°	M1 A1 M1 M1	10	l.o.c. For solving for a and b For correct method for speed or direction of A Direction may be stated in any form , including $\theta = 69^{\circ}$ with

4730

5	(i)	M1		For taking moments of forces on BC about B
	$80 \ge 0.7\cos 60^\circ = 1.4 \text{T}$	A1		
	Tension is 20N	A1		
	$[X = 20\cos 30^{\circ}]$	M1		For resolving forces horizontally
	Horizontal component is 17.3N	A1ft		ft $X = T\cos 30^{\circ}$
	$[Y = 80 - 20\sin 30^{\circ}]$	M 1		For resolving forces vertically
	Vertical component is 70N	A1ft	7	$ft Y = 80 - Tsin30^{\circ}$
	(ii)	M1		For taking moments of forces on AB, or on ABC, about A
	$17.3 \text{ x } 1.4\sin \alpha = (80 \text{ x } 0.7 + 70 \text{ x} 1.4)\cos \alpha \text{ or}$	A1ft		
	$80x0.7\cos\alpha + 80(1.4\cos\alpha + 0.7\cos60^{\circ}) =$			
	$20\cos 60^{\circ}(1.4\cos \alpha + 1.4\cos 60^{\circ}) +$			
	$20\sin 60^{\circ}(1.4\sin \alpha + 14\sin 60^{\circ})$			
	$[\tan \alpha = (\frac{1}{2} 80 + 70)/17.3 = \frac{11}{\sqrt{3}}]$	M1		For obtaining a numerical expression for $\tan \alpha$
	$\alpha = 81.1^{\circ}$	A1	4	I
	ALTERNATIVE METHOD FOR PART (i)			
		M1		For taking moments of forces on BC about B
	$Hx1.4sin60^{\circ} + Vx1.4cos60^{\circ} = 80x0.7cos60^{\circ}$	A1		Where H and V are components of T
		M1		For using $H = V\sqrt{3}$ and solving
				simultaneous equations
	Tension is 20N	A1		
	Horizontal component is 17.3N	B1ft		ft value of H used to find T
	[Y = 80 - V]	M1	_	For resolving forces vertically
	Vertical component is 70N	A1ft	7	ft value of V used to find T

4730

6 (i) $[T = 2058x/5.25]$	M1 For using $T = \lambda x/L$
	A1 For using $I = \lambda x/L$
$2058x/5.25 = 80 x 9.8 \qquad (x = 2)$ OP = 7.25m	
(ii) Initial PE = $(80 + 80)g(5)$ (= 7840)	B1
or $(80 + 80)$ gX used in energy equation	D1
Initial KE = $\frac{1}{2}(80 + 80)3.5^2$ (= 980)	B1
[Initial EE = $2058 \times 2^2/(2 \times 5.25)$ (= 784),	M1 For using $EE = \lambda x^2/2L$
Final EE = $2058x7^2/(2x5.25)$ (= 9604), or	
$2058(X+2)^2/(2x5.25)$]	
[Initial energy $= 7840 + 980 + 784$,	M1 For attempting to verify
final energy $= 9604$	compatibility with the
or $1568X + 980 + 784 = 196(X^2 + 4X + 4) \rightarrow$	principle of conservation of
$196X^2 - 784X - 980 = 0]$	energy, or using the principle
	and solving for X
Initial energy = final energy or $X = 5 \rightarrow P\&Q$ just rea	ach A1 5 AG
the net	
(iii) $[PE gain = 80g(7.25 + 5)]$	M1 For finding PE gain from net
	level to O
PE gain = 9604	A1
PE gain = EE at net level \rightarrow P just reaches O	A1 3 AG
(iv) For any one of 'light rope', 'no air	B1
resistance', 'no energy lost in rope'	
For any other of the above	B1 2
· · · ·	
FIRST ALTERNATIVE METHOD FOR	
PART (ii)	
[160g - 2058x/5.25 = 160v dv/dx]	M1 For using Newton's second
	law with $a = v dv/dx$,
	separating the variables and
	attempting to integrate
$v^2/2 = gx - 1.225x^2$ (+ C)	A1 Any correct form
	M1 For using $v(2) = 3.5$
C = -8.575	A1
$[v(7)^2]/2 = 68.6 - 60.025 - 8.575 = 0 \Rightarrow P\&Q just$	
reach the net	
Touch the net	
SECOND ALTERNATIVE METHOD FOR PART	 T
(ii)	1
$\ddot{x} = g - 2.45x \qquad (= -2.45(x - 4))$	B1
x - g = 2.45x (2.45(X-4))	
	M1 For using $n^2 = 2.45$ and
	$v^2 = n^2 (A^2 - (x - 4)^2)$
$3.5^{2} = 2.45(A^{2} - (-2)^{2}) \qquad (A = 3)$	A1
[(4-2)+3]	M1 For using 'distance travelled
	downwards by P and $Q =$
	distance to new equilibrium
	position $+ A$
distance travelled downwards by P and Q = $5 \rightarrow P\delta$	&Q A1 5 AG
just reach the net	

4730

7	(i) $[a = 0.7^2/0.4]$	M1		For using $a = v^2/r$
	For not more than one error in	A1		e
	$T - 0.8gcos60^\circ = 0.8x0.7^2/0.4$			
	Above equation complete and correct	A1		
	Tension is 4.9N	A1	4	
	(ii)	M1		For using the principle of
	$\frac{1}{2} 0.8 v^2 =$	A1		conservation of energy $(v = 2.1)$
	$\frac{1}{2} 0.80^{\circ} =$ $\frac{1}{2} 0.8(0.7)^2 + 0.8g0.4 - 0.8g0.4 \cos 60^{\circ}$	AI		(v - 2.1)
	(2.1-0)/7 = 2u	M1		For using NEL
	Q's initial speed is 0.15ms^{-1}	A1	4	-
	(iii)	M1		For using Newton's second
				law transversely
	(m) $0.4\ddot{\theta} = -(m)g\sin\theta$	A1		*Allow m = 0.8 (or any other numerical value)
	$[0.4\ddot{\theta} \approx -g\theta]$	M1		For using $\sin \theta \approx \theta$
	$1^{1/2} \text{ m}0.15^2 = \text{mg}0.4(1 - \cos\theta_{\text{max}})$ $\Rightarrow \theta_{\text{max}} = 4.34^{\circ} (0.0758 \text{ rad})$	M1		For using the principle of conservation of energy to find
				$ heta_{ m max}$
	θ_{max} small justifies $0.4 \ddot{\theta} \approx -g \theta$, and this implies SHM	A1	5	
	(iv) $[T = 2\pi / \sqrt{24.5} = 1.269]$	M1		For using T = $2\pi/n$
	$[\sqrt{24} 5]t = \pi$]			or
				for solving either $\sin nt = 0$
				(non-zero t) (considering displacement) or $\cos nt = -1$
				(considering velocity) $($
	Time interval is 0.635s	A1ft	2	From $t = \frac{1}{2}T$