Mark Scheme 4730 June 2007

2	ALTERNATIVE METHOD		
		M1	For using I= Δ mv parallel to the initial direction of motion or parallel to the impulse
	$-0.6 \cos \alpha=0.057 \times 7 \cos \beta-0.057 \times 10$	A1	
	or $0.6=0.057 \times 10 \cos \alpha+0.057 \times 7 \cos \gamma$		
		M1	For using I= Δ mv perpendicular to the initial direction of motion or perpendicular to the impulse
	$0.6 \sin \alpha=0.057 \times 7 \sin \beta$	A1	
	or $0.057 \mathrm{x} 10 \sin \alpha=0.057 \mathrm{x} 7 \sin \gamma$		
		M1	For eliminating $\beta *$ or γ
	$\begin{aligned} & 0.399^{2}=(0.57-0.6 \cos \alpha)^{2}+(0.6 \sin \alpha)^{2} \\ & \text { or } 0.399^{2}=(0.6-0.57 \cos \alpha)^{2}+(0.057 \sin \alpha)^{2} \end{aligned}$	A1ft	
	Angle is 140°	A1	$(180-39.8)^{\circ}$

ALTERNATIVE METHOD FOR PART (iii)

$\left[\int \frac{1}{v^{2}} d v=-2 \int d t \rightarrow-1 / \mathrm{v}=-2 \mathrm{t}+\mathrm{A}\right.$, and
A $=-1 / \mathrm{u}]$
$-\mathrm{e}^{2 \mathrm{x}} \mathrm{u} / \mathrm{u}=-2 \mathrm{t}-1 / \mathrm{u}$
$\mathrm{u}=6.70$

$u=6.70$

M1 \quad For using $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$, separating variables, attempting to integrate and using $\mathrm{v}(0)=\mathrm{u}$
M1 \quad For substituting $v=u e^{-2 x}$
A1
A1 4 Accept $\left(\mathrm{e}^{4}-1\right) / 8$

| 4 | $\mathrm{y}=15 \sin \alpha$
 $[4(15 \cos \alpha)-3 \times 12=4 \mathrm{a}+3 \mathrm{~b}]$ | B1
 M1 |
| :--- | :--- | :--- | | For using principle of |
| :--- |
| conservation of momentum in the |
| direction of l.o.c. |

5	(i)	M1	For taking moments of forces on BC about B
	$80 \times 0.7 \cos 60^{\circ}=1.4 \mathrm{~T}$	A1	For resolving forces horizontally $\mathrm{ft} \mathrm{X}=\mathrm{T} \cos 30^{\circ}$ For resolving forces vertically $\mathrm{ft} \mathrm{Y}=80-\mathrm{T} \sin 30^{\circ}$
	Tension is 20 N	A1	
	[$\mathrm{X}=20 \cos 30^{\circ}$]	M1	
	Horizontal component is 17.3 N	A1ft	
	[$\mathrm{Y}=80-20 \sin 30^{\circ}$]	M1	
	Vertical component is 70N	A1ft	
	(ii)	M1	For taking moments of forces on $A B$, or on $A B C$, about A
	$17.3 \times 1.4 \sin \alpha=(80 \times 0.7+70 \times 1.4) \cos \alpha$ or	A1ft	
	$80 \times 0.7 \cos \alpha+80\left(1.4 \cos \alpha+0.7 \cos 60^{\circ}\right)=$		
	$20 \cos 60^{\circ}\left(1.4 \cos \alpha+1.4 \cos 60^{\circ}\right)+$		
	$20 \sin 60^{\circ}\left(1.4 \sin \alpha+14 \sin 60^{\circ}\right)$		
	$[\tan \alpha=(1 / 280+70) / 17.3=11 / \sqrt{3}]$	M1	For obtaining a numerical
	$\alpha=81.1^{\circ}$	A1	expression for $\tan \alpha$

ALTERNATIVE METHOD FOR PART (i)		
$\mathrm{Hx} 1.4 \sin 60^{\circ}+\mathrm{Vx} 1.4 \cos 60^{\circ}=80 \mathrm{x} 0.7 \cos 60^{\circ}$	M1	For taking moments of forces on BC about B
	A1	Where H and V are components of T
	M1	For using $\mathrm{H}=\mathrm{V} \sqrt{3}$ and solving simultaneous equations
Tension is 20N	A1	
Horizontal component is 17.3 N	B1ft	ft value of H used to find T
[$\mathrm{Y}=80-\mathrm{V}$]	M1	For resolving forces vertically
Vertical component is 70N	A1ft	ft value of V used to find T

FIRST ALTERNATIVE METHOD FOR
PART (ii)
[160g - 2058x/5.25 = 160v dv/dx] M1 For using Newton's second law with a = v dv/dx, separating the variables and attempting to integrate
$v^{2} / 2=g x-1.225 x^{2}(+C)$
A1 Any correct form
M1 For using $v(2)=3.5$
$C=-8.575$
A1
$\left[\mathrm{v}(7)^{2}\right] / 2=68.6-60.025-8.575=0 \rightarrow \mathrm{P} \mathrm{\& Q}$ just
A1 5 AG
reach the net

SECOND ALTERNATIVE METHOD FOR PART

(ii)

$\ddot{x}=g-2.45 x \quad(=-2.45(x-4))$	B1		
	M1		For using $n^{2}=2.45$ and $v^{2}=n^{2}\left(A^{2}-(x-4)^{2}\right)$
$3.5^{2}=2.45\left(\mathrm{~A}^{2}-(-2)^{2}\right) \quad(\mathrm{A}=3)$	A1		
$[(4-2)+3]$	M1		For using ‘distance travelled downwards by P and $\mathrm{Q}=$ distance to new equilibrium position + A
distance travelled downwards by P and $\mathrm{Q}=5 \rightarrow \mathrm{P} \& \mathrm{Q}$ just reach the net	A1	5	AG

